Нейтронная бомба – уничтожаем солдат противника оставляя в сохранности его технику

История создания

Впервые о создании нового оружия задумались в Германии в 1938 году, после того, как два физика Ган и Штрассман произвели расщепление атома урана искусственным путем.Годом позже началось строительство первого реактора в окрестностях Берлина, для которого было закуплено несколько тонн урановой руды.С 1939 года в связи с началом войны все работы по атомному оружию засекречиваются. Программа получает название «Урановый проект».

В 1944 году группа Гейзенберга изготовила урановые плиты для реактора. Планировалось, что эксперименты по созданию искусственной цепной реакции начнутся в начале 1945. Но из-за переноса реактора из Берлина в Хайгерлох график опытов сместился на март. Согласно проведенному эксперименту, реакция деления в установке не началась, т.к. массы урана и тяжелой воды была ниже необходимого значения (1,5т урана при потребности в 2,5т).

В апреле 1945 года Хайгерлох заняли американцы. Реактор был разобран и с оставшимся сырьем вывезен в США.В Америке атомная программа получила название «Манхэттенский проект». Его руководителем стал физик Оппенгеймер совместно с генералом Гровсом. В их группу входили также немецкие ученые Бор, Фриш, Фукс, Теллер, Блох, уехавшие или эвакуированные из Германии.

Плутониевый боезаряд, выполненный в виде авиабомбы («Толстяк») был сброшен на Нагасаки 9 августа 1945 года. Урановая бомба пушечного типа («Малыш») испытаний на полигоне в Нью-Мехико не проходила и была сброшена на Хиросиму 6 августа 1945 года.

Работы над созданием своего атомного оружия в СССР начали проводиться с 1943 года. Советская разведка доложила Сталину о разработках в нацисткой Германии сверхмощного оружия, способного изменить ход войны. Также в докладе содержались сведения, что кроме Германии работы над атомной бомбой проводились и в странах союзниках.

Для ускорения работ по созданию атомного оружияразведчиками был завербован физик Фукс, участвовавший в то время в «Манхэттенском проекте». Также в Союз были вывезены ведущие немецкие физики Арденне, Штейнбек,Риль связанные с «урановым проектом» в Германии. В 1949 году на полигоне в Семипалатинской области Казахстана произошло успешное испытание советской бомбы РДС-1.

Наращивание количества урана в заряде приводит к его срабатыванию лишь только достигается критическая масса. Ученые пробовали решить данную проблему путем создания различных компоновок, разделяя уран на множество частей (в виде раскрытого апельсина) которые соединялись воедино при взрыве. Но это не позволило существенно увеличить мощность.В отличие от атомной бомбы топливо для термоядерного синтеза не имеет критической массы.

Первой предложенной конструкцией водородной бомбы стал «классический супер», разработанный Теллером в 1945 году. По сути это была та же атомная бомба, внутри которой поместили цилиндрический контейнер с дейтериевой смесью.

Ученым из СССР Сахаровым осенью 1948 года создана принципиально новая схема водородной бомбы – «слойка». В ней в качестве взрывателя использовался уран-238 вместо урана-235 (изотоп U-238 является отходом при производстве изотопа U-235), источником трития и дейтерия одновременно стал дейтрид лития.

Бомба состояла из множества слоев урана и дейтрида.Первую термоядерную бомбу РДС-37 мощностью 1,7 Мт взорвали на Семипалатинском полигоне в ноябре 1955 года. Впоследствии ее конструкция с небольшими изменениями стала классической.

Как работает нейтронная бомба — особенности поражающих факторов

Нейтронная бомба – это разновидность ядерного оружия, основным поражающим фактором которого является поток нейтронного излучения. Вопреки распространенному мнению, после взрыва нейтронного боеприпаса образуется и ударная волна, и световое излучение, но большая часть энергии выделяемой энергии превращается в поток быстрых нейтронов. Нейтронная бомба относится к тактическому ядерному оружию.

Принцип действия нейтронных боеприпасов основан на свойстве быстрых нейтронов гораздо сильнее проникать через различные преграды, по сравнению с рентгеновским излучением, альфа, бета и гамма-частицами. Например, 150 мм брони способны удержать до 90% гамма-излучения и только 20% нейтронной волны. Грубо говоря, спрятаться от проникающего излучения нейтронного боеприпаса гораздо сложнее, чем от радиации обычной ядерной бомбы

Именно это свойство нейтронов и привлекло внимание военных

Нейтронная бомба имеет ядерный заряд небольшой мощности, а также специальный блок (его обычно изготавливают из бериллия), который и является источником нейтронного излучения. После подрыва ядерного заряда большая часть энергии взрыва преобразуется в жесткое нейтронное излучение. На остальные факторы поражения — ударная волна, световой импульс, электромагнитное излучение — приходится лишь 20% энергии.

Однако все вышесказанное всего лишь теория, практическое применение нейтронного оружия имеет некоторые нюансы.

Земная атмосфера очень сильно гасит нейтронное излучение, поэтому дальность действия этого поражающего фактора не больше, чем дистанция поражения ударной волны. По этой же причине нет смысла изготавливать нейтронные боеприпасы большой мощности – излучение все равно быстро затухнет. Обычно нейтронные заряды имеют мощность около 1 кТ. При его подрыве происходит поражение нейтронным излучением в радиусе 1,5 км. На дистанции в 1350 метров от эпицентра оно опасно для жизни человека.

Кроме того, поток нейтронов вызывает в материалах — например, в броне — наведенную радиоактивность. Если посадить в танк, попавший под действие нейтронного оружия (на дистанциях около километра от эпицентра), новый экипаж, то он получит летальную дозу радиации в течение суток.

Не соответствует действительности распространенное мнение о том, что нейтронная бомба не уничтожает материальные ценности. После взрыва подобного боеприпаса образуется и ударная волна, и импульс светового излучения, зона сильных разрушений от которых имеет радиус примерно в один километр.

Нейтронные боеприпасы не слишком подходят для использования в земной атмосфере, зато они могут быть весьма эффективны в космическом пространстве. Там нет воздуха, поэтому нейтроны распространяются беспрепятственно на весьма значительные расстояния. Благодаря этому различные источники нейтронного излучения рассматриваются в качестве эффективного средства противоракетной обороны. Это так называемое пучковое оружие. Правда, в качестве источника нейтронов обычно рассматривается не нейтронные ядерные бомбы, а генераторы направленных нейтронных пучков – так называемые нейтронные пушки.

Использовать их в качестве средства для поражения баллистических ракет и боевых блоков предлагали еще разработчики рейгановской программы Стратегической оборонной инициативы (СОИ). При взаимодействии пучка нейтронов с материалами конструкции ракет и боеголовок возникает наведенная радиация, которая надежно выводит из строя электронику этих устройств.

После появления идеи нейтронной бомбы и начала работ по ее созданию стали разрабатываться методы защиты от нейтронного излучения. В первую очередь они были направлены на уменьшение уязвимости боевой техники и экипажа, находящегося в ней. Основным методом защиты от подобного оружия стало изготовление специальных видов брони, хорошо поглощающих нейтроны. Обычно в них добавляли бор – материал, прекрасно улавливающий эти элементарные частицы. Можно добавить, что бор входит в состав поглощающих стрежней ядерных реакторов. Еще одним способом уменьшить поток нейтронов является добавление в броневую сталь обедненного урана.

Вообще, практически вся боевая техника, созданная в 60-е – 70-е годы прошлого столетия, максимально защищена от большинства поражающих факторов ядерного взрыва.

Миф 5: нейтронная бомба имеет ограниченное применение на земле

Использование нейтронов в качестве поражающего элемента уже в 1960-е годы подсказало разработчикам нейтронного оружия, что его можно эффективно применять в безвоздушном пространстве.

С самого начала нейтронное оружие пытались ставить на ракеты ПРО. В США это были ракеты типаСпринт» с нейтронным боеголовками. Их развернули вокруг крупнейшей авиабазы США Гранд-Форкс(Северная Дакота).

ЗапускСпринта»

Выпущенные врагом атомные ракеты предполагалось перехватывать на высоте в пару десятков километров. В момент перехвата взрывался нейтронный заряд противоракет, и нейтронное излучение выводило из строя детонаторы ракет противника — а заодно вызывало реакцию деления у части плутония, что могло разрушить вражескую ракету за счёт выделяемой энергии.

Однако несмотря на столь радужные планы, данный вид ПРО сочли бесперспективным, и ракеты с нейтронными зарядами быстро сняли с дежурства.

Против нейтронной бомбы довольно быстро нашлипротивоядие». Бор, обеднённый уран и новые керамические материалы свели на нет её эффективность. Впрочем, в конце марта 2018 года американцы заявили, что нейтронное оружие можно весьма перспективно использовать в космосе.

Почему предпочтительнее слияние ядер?

При термоядерной реакции, заключающейся в слиянии ядер участвующих в ней химических элементов, генерируется значительно больше энергии на единицу массы физического устройства, чем в чистой атомной бомбе, реализующей ядерную реакцию деления.

В атомной бомбе делящееся ядерное топливо быстро, под действием энергии подрыва обычных взрывчатых веществ объединяется в небольшом сферическом объеме, где создается его так называемая критическая масса, и начинается реакция деления. При этом многие нейтроны, освобождающиеся из делящихся ядер, будут вызывать деление других ядер в массе топлива, которые также выделяют дополнительные нейтроны, что приводит к цепной реакции. Она охватывает не более 20 % топлива, прежде чем бомба взрывается, или, возможно, гораздо меньше, если условия не идеальны: так в атомных бомбах Малыш, сброшенной на Хиросиму, и Толстяк, поразившей Нагасаки, КПД (если такой термин вообще можно к ним применять) были всего 1,38 % и 13%, соответственно.

Слияние (или синтез) ядер охватывает всю массу заряда бомбы и длится, пока нейтроны могут находить еще не вступившее в реакцию термоядерное горючее. Поэтому масса и взрывная мощность такой бомбы теоретически неограниченны. Такое слияние может продолжаться теоретически бесконечно. Действительно, термоядерная бомба является одним из потенциальных устройств конца света, которое может уничтожить всю человеческую жизнь.

Миф 2: чем мощнее нейтронная бомба, тем лучше

Первоначально нейтронную бомбу планировали наклепать в нескольких вариантах – от одной килотонны и выше. Однако расчёты и испытания показали, что делать бомбу больше одной килотонны не очень перспективно.

Так что – пусть и не бомбу, но само нейтронное оружие рано списывать в утиль.

При взрыве нейтронной бомбы основным поражающим фактором является поток нейтронов. Он проходит сквозь большинство предметов, но причиняет вред живым организмам на уровне атомов и частиц. Радиация воздействует, прежде всего, на ткани головного мозга, вызывая шок, конвульсии, паралич и кому. Кроме того, нейтроны преобразуют атомы внутри человеческого тела, создавая радиоактивные изотопы, облучающие организм изнутри. Смерть при этом наступает не мгновенно, а в течение 2 суток.

Если сбросить нейтронный заряд на город, основная часть построек в радиусе 2 километров от эпицентра взрыва сохранится, в то время, как люди и животные погибнут. Например, для уничтожения всего населения Парижа, как было подсчитано, достаточно 10-12 бомб. Те жители, которым удастся выжить, годами будут страдать от лучевой болезни.

«Зловещим прообразом такого оружия была атомная бомба, сброшенная американским лётчиком 6 августа 1945 года на Хиросиму. Теперь установлено, что эта бомба (урановая) при взрыве дала в 4-5 раз больше нейтронов, чем бомба, взорванная в Нагасаки (плутониевая). И как результат – в Хиросиме погибло почти в 3 раза больше людей, чем в Нагасаки, хотя мощность бомбы, сброшенной на Хиросиму, была в два раза меньше», – писал в 1986 году автор книги «За пределами законности», Иван Арцибасов.

Использовать бомбу с источником быстрых нейтронов (изотопом беррилия) в 1958 году предложил американский физик Сэмюэль Коэн. Впервые подобный заряд военные США испытали через 5 лет на подземном полигоне в штате Невада.

Заряд конструктивно представляет собой обычный ядерный заряд малой мощности, к которому добавлен блок, содержащий небольшое количество термоядерного топлива (смесь дейтерия и трития). При подрыве взрывается основной ядерный заряд, энергия которого используется для запуска термоядерной реакции . Большая часть энергии взрыва при применении нейтронного оружия выделяется в результате запущенной реакции синтеза . Конструкция заряда такова, что до 80 энергии взрыва составляет энергия потока быстрых нейтронов , и только 20 % приходится на остальные поражающие факторы (ударную волну , ЭМИ , световое излучение).

Молодой, но перспективный

Необходимость скорейшего создания советского ядерного оружия стала очевидна, когда в 1942 году из донесений разведки выяснилось, что ученые в США далеко продвинулись в ядерных исследованиях. Косвенно говорило об этом и полное прекращение научных публикаций по данной тематике ещё в 1940. Все указывало на то, что работы по на созданию самой мощной в мире бомбы идут полным ходом.

28 сентября 1942 года Сталин подписал секретный документ «Об организации работ по урану».

Бомба_12

Игорь Васильевич Курчатов

Фото: пресс-служба НИЦ «Курчатовский институт»

Руководство советским атомным проектом поручили молодому и энергичному физику Игорю Курчатову, который, как позже вспоминал его друг и соратник академик Анатолий Александров, «уже давно воспринимался как организатор и координатор всех работ в области ядерной физики». Однако сам масштаб тех работ, о которых упомянул ученый, был тогда еще невелик — в то время в СССР, в специально созданной в 1943 году Лаборатории № 2 (ныне Курчатовский институт) разработкой ядерного оружия занимались лишь 100 человек, тогда как в США над аналогичным проектом трудилось около 50 тыс. специалистов.

Поэтому работа в Лаборатории № 2 велась авральными темпами, которые требовали как поставок и создания новейших материалов и оборудования (и это в военное время!), так и изучения данных разведки, которой удавалось заполучить часть информации об американских исследованиях.

— Разведка помогла ускорить работу и приблизительно на год сократить наши усилия, — отметил советник директора НИЦ «Курчатовский институт» Андрей Гагаринский. — В «отзывах» Курчатова о разведматериалах Игорь Васильевич по существу давал разведчикам задания, о чем именно хотелось бы узнать ученым.

Поражающие факторы

Атомное оружие имеет такие факторы поражения:

  1. Радиоактивное заражение.
  2. Световое излучение.
  3. Ударная волна.
  4. Электромагнитный импульс.
  5. Проникающая радиация.

Последствия взрыва атомной бомбы губительны для всего живого. Из-за высвобождения огромного количества световой и теплой энергии взрыв ядерного снаряда сопровождается яркой вспышкой. По мощности эта вспышка в несколько раз сильнее, чем солнечные лучи, поэтому опасность поражения световым и тепловым излучение есть в радиусе нескольких километров от точки взрыва.

Еще одним опаснейшим поражающим фактором атомного оружия является образующаяся при взрыве радиация. Она действует всего минуту после взрыва, но имеет максимальную проникающую способность.

Ударная волна обладает сильнейшим разрушающим действием. Она буквально стирает с лица земли все, что стоит у нее на пути. Проникающая радиация несет опасность для всех живых существ. У людей она вызывает развитие лучевой болезни. Ну а электромагнитный импульс наносит вред только технике. В совокупности же поражающие факторы атомного взрыва несут в себе огромную опасность.

Последовательность термоядерного взрыва

Когда первичная атомная бомба детонирует, то в первые мгновения этого процесса генерируется мощное рентгеновское излучение (поток нейтронов), которое частично блокируется щитом нейтронной защиты, и отражается от внутренней облицовки корпуса, окружающего вторичный заряд, так что рентгеновские лучи симметрично падают на него по всей его длине.

На начальных этапах термоядерной реакции нейтроны от атомного взрыва поглощаются пластиковым заполнителем, чтобы не допустить чересчур быстрого разогрева топлива.

Рентгеновские лучи вызвают появление вначале плотной пластиковой пены, заполняющей пространство между корпусом и вторичным зарядом, которая быстро переходит в состояние плазмы, нагревающей и сжимающей вторичный заряд.

Кроме того, рентгеновские лучи испаряют поверхность контейнера, окружающего вторичный заряд. Симметрично испаряющееся относительно этого заряда вещество контейнера приобретает некоторый импульс, направленный от его оси, а слои вторичного заряда согласно закону сохранения количества движения получают импульс, направленный к оси устройства. Принцип здесь тот же, что и в ракете, только если представить, что ракетное топливо разлетается симметрично от ее оси, а корпус сжимается внутрь.

В результате такого сжатия термоядерного топлива, его объем уменьшается в тысячи раз, а температура достигает уровня начала реакции слияния ядер. Происходит взрыв термоядерной бомбы. Реакция сопровождается образованием ядер трития, которые сливаются с ядрами дейтерия, изначально имеющимися в составе вторичного заряда.

Первые вторичные заряды были построены вокруг стержневого сердечника из плутония, неофициально называемого “свечой”, который вступал в реакцию ядерного деления, т. е. осуществлялся еще один, дополнительный атомный взрыв с целью еще большего поднятия температуры для гарантированного начала реакции слияния ядер. В настоящее время считается, что более эффективные системы сжатия устранили «свечу», позволяя дальнейшую миниатюризацию конструкции бомбы.

Достижение предельной мощности

Затем последовало десятилетие непрерывной гонки вооружений, в течение которого мощность термоядерных боеприпасов непрерывно возрастала. Наконец, 30.10.1961 г. в СССР над полигоном Новая Земля в воздухе на высоте около 4 км была взорвана самая мощная термоядерная бомба, которая когда-либо была построена и испытана, известная на Западе как «Царь-бомба».

Этот трехступенчатый боеприпас разрабатывался на самом деле как 101,5-мегатонная бомба, но стремление снизить радиоактивное заражение территории заставило разработчиков отказаться от третьей ступени мощностью в 50 мегатонн и снизить расчетную мощность устройства до 51,5 мегатонн. При этом 1,5 мегатонны составляла мощность взрыва первичного атомного заряда, а вторая термоядерная ступень должна была дать еще 50. Реальная мощность взрыва составила до 58 мегатонн.Внешний вид бомбы показан на фото ниже.

Последствия его были впечатляющими. Несмотря на весьма существенную высоту взрыва в 4000 м, невероятно яркий огненный шар нижним краем почти достиг Земли, а верхним поднялся до высоты более 4,5 км. Давление ниже точки разрыва было в шесть раз выше пикового давления при взрыве в Хиросиме. Вспышка света была настолько яркой, что ее было видно на расстоянии 1000 километров, несмотря на пасмурную погоду. Один из участников теста увидел яркую вспышку через темные очки и почувствовал последствия теплового импульса даже на расстоянии 270 км. Фото момента взрыва показано ниже.

При этом было показано, что мощность термоядерного заряда действительно не имеет ограничений. Ведь достаточно было выполнить третью ступень, и расчетная мощность была бы достигнута. А ведь можно наращивать число ступеней и далее, так как вес «Царь-бомбы» составил не более 27 тонн. Вид этого устройства показан на фото ниже.

После этих испытаний многим политикам и военным как в СССР, так и в США стало ясно, что наступил предел гонки ядерных вооружений и ее нужно остановить.

Современная Россия унаследовала ядерный арсенал СССР. Сегодня термоядерные бомбы России продолжают служить сдерживающим фактором для тех, кто стремится к мировой гегемонии. Будем надеяться, что они сыграют свою роль только в виде средства устрашения и никогда не будут взорваны.

Как развивались технологии дальше

Открытие французского механика относительно устройства переменного тока получило широкое применение только в 70-х года ХХ века. Все дело в том, что он только изобрел первый трансформатор, хотя изобретение требовало совершенствование. На основании созданного прототипа другие ученые занимались его дальнейшей разработкой. В 1876 году П.Н. Яблочков представил усовершенствованную модель трансформатора. Хотя нужно сказать, что были внесены немного изменений и дополнений. К примеру:

  1. В качестве сердечника ученый использовал специальный стержень, на который непосредственно осуществлялась намотка обмотки.
  2. Вместо, ранее используемой пружинной пластины за основу он взял индукционную катушку.

Благодаря внесенным изменениям работа первичной обмотки осуществлялась согласно обусловленной последовательности, тем самым предоставляя напряжение, которое требовалось для работы электроприборов.

Но следует сказать, что совершенствование первого трансформатора осуществлялось и другими учеными. Непременно необходимо упомянуть, что Яблочков сделал преобразующее ток устройство с разомкнутыми сердечниками, что в свою очередь предусматривало большие затраты электроэнергии. Спустя некоторое время братья Гопкинсоны в 1882 году сделали трансформатор с замкнутыми сердечниками и это послужило стартом для экономии потребления электричества в будущем.

Сутью совершенствования стало то, что они поставили на сердцевину катушки, имеющие высокое и низкое напряжение. А вот сам стержень состоял из проволоки и стальных полосок, которые разделялись между собой материалом с изоляционными характеристиками.

В дальнейшем работы по усовершенствованию трансформаторов продолжались. Основанием этого являлось уменьшение потребления электроэнергии, поскольку предыдущие устройства ее расходовали достаточно много. Немаловажным открытием считается изобретение трехфазного трансформатора русским инженером Доливо-Добровольским в 1890 году. На основании произведенных ним расчетов он доказал, что благодаря трехфазному трансформатору можно экономить потребляемую электроэнергию.

Миф 4: у нейтронной бомбы высокая продолжительность радиоактивного излучения

Когда-то Айзек Азимов назвал нейтронную бомбукапиталистическим оружием» — оно, мол, уничтожает людей, но заботится о материальной собственности. Ну кто же выберет машины вместо людей? Только негодяй‑буржуй.

Нейтронная бомба уничтожает только жизнь, а не собственность»

Создатели бомбы уверяли правительство США, что у неё есть одно железобетонное преимущество: она не вызывает долговременного радиоактивного заражения местности. Дескать, через сутки армия может без последствий занимать зачищенную территорию.

Испытания и расчёты показали, что, в отличие от любого другого атомного оружия, нейтронная бомба действительно практически не загрязняет территорию. В том смысле, что железные конструкции будут не сильнофонить» какое-то время и радиоактивное заражение местности можно легко дезактивировать по ходу боёв — а не через несколько лет(а то и десятков лет), как при взрыве водородной бомбы.

Строение ядерной бомбы

В качестве прототипа мной была взята плутониевая бомба “Толстяк” (рис.2.) сброшенная 9 августа 1945 года на японский город Нагасаки.

Рисунок 2 – Атомная бомба “Толстяк”

Схема этой бомбы (типичная для плутониевых однофазных боеприпасов) примерно следующая:

1. Нейтронный инициатор – шар диаметром порядка 2 см из бериллия, покрытый тонким слоем сплава иттрий-полоний или металлического полония-210 – первичный источник нейтронов для резкого снижения критической массы и ускорения начала реакции. Срабатывает в момент перевода боевого ядра в закритическое состояние (при сжатии происходит смешение полония и бериллия с выбросом большого количества нейтронов). В настоящее время помимо данного типа инициирования, больше распространено термоядерное инициирование (ТИ). Термоядерный инициатор (ТИ). Находится в центре заряда (подобно НИ) где размещается небольшое количество термоядерного материала, центр которого нагревается сходящейся ударной волной и в процессе термоядерной реакции на фоне возникших температур нарабатывается значимое количество нейтронов, достаточное для нейтронного инициирования цепной реакции (рис.3.).

2. Плутоний. Используют максимально чистый изотоп плутоний-239, хотя для увеличения стабильности физических свойств (плотности) и улучшения сжимаемости заряда плутоний легируется небольшим количеством галлия.

3. Оболочка (обычно из урана), служащая отражателем нейтронов.

4. Обжимающая оболочка из алюминия. Обеспечивает бомльшую равномерность обжима ударной волной, в то же время предохраняя внутренние части заряда от непосредственного контакта со взрывчаткой и раскалёнными продуктами её разложения.

5. Взрывчатое вещество со сложной системой подрыва, обеспечивающей синхронность подрыва всего взрывчатого вещества. Синхронность необходима для создания строго сферической сжимающей (направленной внутрь шара) ударной волны. Несферическая волна приводит к выбросу материала шара через неоднородность и невозможность создания критической массы. Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее трудных задач. Используется комбинированная схема (система линз) из “быстрой” и “медленной” взрывчаток.

6. Корпус, изготовленный из дюралевых штампованных элементов – две сферических крышки и пояс, соединяемые болтами.

Рисунок 3. – Принцип действия плутониевой бомбы

Поделитесь в социальных сетях:ВКонтактеFacebookX
Напишите комментарий