Поиск

Взрывчатые вещества: принцип действия и основные виды

Гримасы судьбы

Открытие химического вещества и открытие его взрывчатых свойств зачастую происходили в разное время. Собственно говоря, начало истории взрывчатых веществ могло быть положено в 1832 году, когда французский химик Анри Браконно получил продукт полного нитрования целлюлозы — пироксилин. Однако изучением его свойств никто не занялся, да и способов инициировать детонацию пироксилина тогда не существовало.

Если заглянуть в прошлое еще дальше, обнаружится, что одно из самых распространенных взрывчатых веществ — пикриновая кислота — было получено в 1771 году. Но в то время не существовало даже теоретической возможности осуществить ее детонацию — гремучая ртуть появилась лишь в 1799 году, а до первого применения гремучей ртути в капсюлях-воспламенителях оставалось больше тридцати лет.

Классификация бризантных взрывчатых веществ

Бризантные вещества повышенной мощности

Обладают повышенной скоростью детонации (7500-8500 м/c) и энергией взрыва. Имеют большую чувствительность к начальному импульсу, взрываются от любого капсюля-детонатора, от удара винтовочной пули. От действия открытого огня загораются и горят интенсивно, без копоти и дыма белым или светло-жёлтым пламенем; горение может перейти во взрыв.

Разновидности:

  • ТЭН – тетранитропентааэритрит – (CH₂ONO₂)₄C – белый кристаллический порошок;
  • Нитроглицерин – глицеринтринитрат – CHONO₂(CH₂ONO₂)₂ – маслообразная бесцветная прозрачная жидкость;
  • Гексоген – тримстилентринитроамин – (CH₂)₃N₃(NO₂)₃ – мелкокристаллическое вещество белого цвета без вкуса и запаха;
  • Октоген – циклотетраметилентетранитрамин – C4H8N8O8 – аналог гексогена, однако отличается большей плотностью, более высокой температурой плавления и вспышки;
  • Тетрил – тринитрофнилметилнитроамин – NO23C6H2N(NO2)CH3 – светло-жёлтый, солоноватый на вкус кристаллический порошок.

Бризантные взрывчатые вещества нормальной мощности

Обладают большой стойкостью к внешним воздействиям (кроме динамитов), выдерживают длительное хранение.

Разновидности:

Тротил – тринитротолуол, тол, тритон, ТНТ – С6H2CH3(NO2)3 – кристаллическое вещество от светло-жёлтого до светло-коричневого цвета, горьковатое на вкус;
Пластит-4 – С4 – смесевое взрывчатое вещество, состоящее из гексогена (80-90%), полимерного связующего вещества и пластификатора, представляет собой однородную тестообразную массу светло-кремового цвета;
Динамиты – состоят из нитроглицерина с добавками нитроэфиров, селитры в смеси с древесной мукой и стабилизаторами

Обладают повышенной чувствительностью к механическим и тепловым воздействиям, требуют повышенной осторожности при транспортировке и ведении взрывных работ.
Тринитрофенол – пикриновая кислота, милинит, мелинит, шимозе – C6H2(NO2)3OH – жёлтый или ярко-жёлтый порошок, горький на вкус.

Бризантные взрывчатые вещества пониженной мощности

Обладают пониженной бризантностью и меньшей скоростью детонации (не более 5000 м/с). Уступают взрывчатым веществам нормальной мощности по бризантному действию, но равноценны им по работоспособности (фугасности). Основу таких веществ составляет аммиачная селитра, соединённая с наполнителями (взрывчатыми или горючими веществами: алюминиевой пудрой, древесной пылью и т. д.). Применяются в народном хозяйстве.

Терминология

Сложность и разнообразие химии и технологии взрывчатых веществ, политические и военные противоречия в мире, стремление к засекречиванию любой информации в этой области привели к неустойчивым и разнообразным формулировкам терминов.

Действующая редакция 2011 года принятой ООН Согласованной на глобальном уровне системы классификации и маркировки химических веществ (СГС) даёт следующие определения:

Под взрывчатыми веществами понимаются как индивидуальные взрывчатые вещества, так и взрывчатые составы, содержащие одно или несколько индивидуальных взрывчатых веществ, флегматизаторы, металлические добавки и другие компоненты.
Взрывчатое превращение взрывчатых веществ характеризуется следующими условиями:

  • высокая скорость химического превращения;
  • выделение тепла (экзотермичность процесса);
  • образование газов или паров в продуктах взрыва;
  • способность реакции к самораспространению.

В России в рамках стандартизации в области техногенных чрезвычайных ситуаций к взрывоопасным относят вещества, взрывающиеся при воздействии пламени или проявляющие чувствительность к сотрясениям или трениям большую, чем динитробензол.

Степень опасности

Также в качестве примера можно рассмотреть взрывоопасные вещества по степени их опасности. На первом месте находятся газы на основе углеводорода. Данные вещества склонны к произвольной детонации. К ним относятся хлор, аммиак, фреоны и так далее. Согласно статистике, почти треть происшествий, в которых основными действующими лицами выступают взрывоопасные вещества, связаны с газами на основе углеводорода.

Дальше следует водород, который в определенных условиях (например, соединение с воздухом в соотношении 2:5) приобретает наибольшую взрывоопасность. Ну и замыкают эту тройку лидеров по степени опасности пары жидкостей, которые склонны к воспламенению. Прежде всего, это пары мазута, дизельного топлива и бензина.

Взрывчатый краситель

В 1868 году британскому химику Фредерику-Августу Абелю после шестилетних исследований удалось получить прессованный пироксилин. Однако в отношении тринитрофенола (пикриновой кислоты) Абелю была отведена роль «авторитетного тормоза». Еще с начала XIX века были известны взрывчатые свойства солей пикриновой кислоты, но о том, что сама пикриновая кислота способна к взрыву, никто не догадывался до 1873 года. Пикриновая кислота на протяжении века использовалась как краситель. В те времена, когда началось оживленное испытание взрывчатых свойств разных веществ, Абель несколько раз авторитетно заявлял о том, что тринитрофенол абсолютно инертен.

Трехмерная модель молекулы тринитрофенола.

Герман Шпренгель был немцем по происхожде-нию, но жил и работал в Великобритании. Именно он дал французам воз-можность заработать денег на секретном мелините.

В 1873 году немец Герман Шпренгель, создавший целый класс взрывчатых веществ, убедительно показал способность тринитрофенола к детонации, но тут возникла другая сложность — прессованный кристаллический тринитрофенол оказался очень капризным и непредсказуемым — то не взрывался, когда надо, то взрывался, когда не надо.

Пикриновая кислота предстала перед французской Комиссией по взрывчатым веществам. Было установлено, что она — мощнейшее бризантное вещество, уступающее разве только нитроглицерину, но ее слегка подводит кислородный баланс. Также выяснили, что сама пикриновая кислота обладает низкой чувствительностью, а детонируют ее соли, образующиеся при длительном хранении. Эти исследования положили начало полному перевороту во взглядах на пикриновую кислоту. Окончательно недоверие к новому взрывчатому веществу было рассеяно работами парижского химика Тюрпена, который показал, что плавленая пикриновая кислота неузнаваемо меняет свои свойства по сравнению с прессованной кристаллической массой и совершенно теряет свою опасную чувствительность.

Это интересно: позже выяснилось, что сплавлением решаются проблемы с детонацией у сходной с тринитрофенолом взрывчатки — тринитротолуола.

Такие исследования, разумеется, были строго засекречены. И в восьмидесятые годы XIX века, когда французы стали выпускать новое взрывчатое вещество под названием «мелинит», Россия, Германия, Великобритания и США проявили к нему огромный интерес. Ведь фугасное действие боеприпасов, снаряженных мелинитом, выглядит внушительным и в наши дни. Активно заработали разведки, и спустя недолгое время тайна мелинита стала секретом Полишинеля.

В 1890 году Д. И. Менделеев писал морскому министру Чихачеву: «Что же касается до мелинита, разрушительное действие коего превосходит все данные испытания, то по частным источникам с разных сторон однородно понимается, что мелинит есть не что иное, как сплавленная под большим давлением остывшая пикриновая кислота».

Применение

Работа сапёров противоминного центра минобороны России в Алеппо (Сирия, 2016 год)

Ежегодно в мире производится несколько миллионов тонн взрывчатых веществ. Ежегодный расход взрывчатых веществ в странах с развитым промышленным производством даже в мирное время составляет сотни тысяч тонн. В военное время расход взрывчатых веществ резко возрастает. Так, в период 1-й мировой войны в воюющих странах он составил около 5 миллионов тонн, а во 2-й мировой войне превысил 10 миллионов тонн. Ежегодное использование взрывчатых веществ в США в 1990-х годах составляло около 2 миллионов тонн.

Военное применение

В военном деле взрывчатые вещества используются в качестве метательных зарядов для различного рода оружия и предназначаются для придания снаряду (пуле) определенной начальной скорости.

Промышленное применение

Взрывчатые вещества широко используются в промышленности для производства различных взрывных работ.

Существуют произведения монументального искусства, изготовленные с помощью взрывчатых веществ (монумент Crazy Horse в штате Южная Дакота, США).

В Российской Федерации запрещена свободная реализация взрывчатых веществ, средств взрывания, порохов, всех видов[источник не указан 1008 дней]ракетного топлива, а также специальных материалов и специального оборудования для их производства, нормативной документации на их производство и эксплуатацию.

Научное применение

В научно-исследовательской сфере взрывчатые вещества широко используются как простое средство достижения в экспериментах значительных температур, сверхвысоких давлений и больших скоростей.

Физическая природа взрывного превращения

Взрывное превращение, как правило, носит кратковременный характер, протекает при температурах от 2500 до 4500 K и сопровождается выделением огромного количества высокотемпературных газов и тепла. Взрывная реакция не требует наличия в окружающем воздухе окислителя (в качестве которого обычно выступает кислород), поскольку он содержится в химически связанном виде в ингредиентах взрывчатки.

Стоит отметить, что суммарное количество энергии, которая высвобождается при взрыве, относительно невелико и обычно в пять или шесть раз меньше теплотворной способности нефтепродуктов аналогичной массы. Тем не менее, несмотря на скромную энергетическую отдачу, огромная скорость реакции, которая по закону Аррениуса является следствием большой температуры, обеспечивает достижение высоких значений мощности.

Высвобождение большого количества газообразных продуктов сгорания считается другим признаком химической реакции в виде взрыва. При этом, стремительная трансформация взрывчатого вещества в высокотемпературные газы сопровождается скачкообразным изменением давления (до 10—30 ГПа), которое носит название ударной волны. Распространение этой волны способствует передаче энергии от одного слоя взрывчатки к другому и сопровождается возбуждением в новых слоях аналогичной химической реакции. Этот процесс получил название детонации, а инициирующая его ударная волна стала называться детонационной волной.

Существует ряд веществ, способных к нехимическому взрыву (например, ядерные и термоядерные материалы, антивещество). Также существуют методы воздействия на различные вещества, приводящие к взрыву (например, лазером или электрической дугой). Обычно такие вещества не называют «взрывчатыми».

Немного истории

Человек испокон веков пытался создать вещества, которые при определенном воздействии извне вызвали взрыв. Естественно, делалось это далеко не в мирных целях. И одним из первых широко известных взрывчатых субстанций стал легендарный греческий огонь, рецепт которого до сих пор точно неизвестен. Затем последовало создание пороха в Китае приблизительно в VII веке, который как раз, наоборот, сначала использовали в развлекательных целях в пиротехнике, а лишь потом приспособили для военных нужд.

На несколько столетий утвердилось мнение, что порох является единственным известным человеку взрывчатым веществом. Только в конце XVIII века был открыт фульминат серебра, который небезызвестен под необычным названием “гремучее серебро”. Ну а после этого открытия появились пикриновая кислота, “гремучая ртуть”, пироксилин, нитроглицерин, тротил, гексоген и так далее.

Взрывчатые вещества в военном деле

Взрывчатые вещества находят применение в военном деле повсеместно. Взрыв бывает двух типов: горение и детонация. Из-за того, что порох горит, при его взрыве в замкнутом пространстве происходит не разрушение гильзы, а образование газов и вылет пули или снаряда из ствола. Тротил, гексоген или аммонал как раз детонируют и создают взрывную волну, давление резко возрастает. Но для того, чтобы произошел процесс детонации, необходимо воздействие со стороны, которое может быть:

  • механическим (удар или трение);
  • тепловым (пламя);
  • химическим (реакция взрывчатого вещества с ещё каким-либо веществом);
  • детонационным (происходит взрыв одного взрывчатого вещества рядом с другим).

Исходя из последнего пункта, становится ясно, что можно выделить два больших класса взрывчатых веществ: композитные и индивидуальные. Первые в основном состоят из двух или более веществ, которые не связаны между собой химически. Бывает, что по отдельности такие компоненты не способны к детонации и могут проявить подобное свойство только при контакте друг с другом.

Также помимо главных компонентов в составе композитного взрывчатого вещества могут находиться различные примеси. Назначение их также является весьма широким: регулирование чувствительности или фугасности, ослабление взрывных характеристик или их усиление. Так как в последнее время мировой терроризм все больше и больше распространяется с помощью примесей, стало возможным обнаружить, где было изготовлено взрывчатое вещество, и найти его с помощью служебных собак.

С индивидуальными все понятно: иногда для положительного теплового выхода им не требуется даже кислород.

Общая характеристика

Вскрытие входной двери с помощью компактного подрывного заряда (2008 год)

Любое взрывчатое вещество обладает следующими характеристиками:

  • способность к экзотермическим химическим превращениям
  • способность к самораспространяющемуся химическому превращению

Важнейшими характеристиками взрывчатых веществ являются:

  • скорость взрывчатого превращения (скорость детонации или скорость горения),
  • давление детонации,
  • теплота (удельная теплота) взрыва,
  • состав и объём газовых продуктов взрывчатого превращения,
  • максимальная температура продуктов взрыва (температура взрыва),
  • чувствительность к внешним воздействиям,
  • критический диаметр детонации,
  • критическая плотность детонации.

При детонации разложение взрывчатых веществ происходит настолько быстро (за время от 10−6 до 10−2сек), что газообразные продукты разложения с температурой в несколько тысяч градусов оказываются сжатыми в объёме, близком к начальному объёму заряда. Резко расширяясь, они являются основным первичным фактором разрушительного действия взрыва.

Различают два основных вида действия взрывчатых веществ: бризантное (местного действия) и фугасное (общего действия).

Существенное значение при хранении взрывчатых веществ и обращении с ними имеет их стабильность.

В прикладных сферах широко используется не более двух-трёх десятков взрывчатых веществ и их смесей. Основные характеристики наиболее распространённых из них сведены в следующую таблицу (данные приведены при плотности заряда 1600 кг/м3):

Взрывчатое веществоКислородный баланс,%Теплота взрыва, МДж/кгОбъём продуктов взрыва, м3/кгСкорость детонации, км/с
Тротил-74,04,20,757,0
Тетрил-47,44,60,747,6
Гексоген-21,65,40,898,1
Тэн-10,15,90,797,8
Нитроглицерин+3,56,30,697,7
Аммонит № 64,20,895,0
Нитрат аммония+20,01,60,98≈1,5
Азид свинцанеприменимо1,70,235,3
Баллиститный порох-453,560,977,0

Разбудить демона

Как ни забавно, у «родственника» пикриновой кислоты — тринитротолуола — судьба оказалась сходной. Впервые он был получен немецким химиком Вильбрандом еще в 1863 году, но лишь в начале XX века нашел применение в качестве взрывчатого вещества, когда за его исследование взялся немецкий инженер Генрих Каст

В первую очередь он обратил внимание на технологию синтеза тринитротолуола — она не содержала опасных по взрыву этапов. Уже одно это было колоссальным преимуществом

Еще свежи были в памяти европейцев многочисленные ужасающие взрывы фабрик, производивших нитроглицерин.

Трехмерная модель молекулы тринитротолуола.

Еще одним немаловажным достоинством была химическая инертность тринитротолуола — реакционная способность и гигроскопичность пикриновой кислоты изрядно досаждали конструкторам артиллерийских снарядов.

Полученные Кастом желтоватые чешуйки тринитротолуола проявили удивительно мирный нрав — настолько мирный, что многие сомневались в его способности к детонации. Сильные удары молотком плющили чешуйки, в огне тринитротолуол взрывался не лучше, чем березовые дрова, а горел гораздо хуже. Доходило до того, что в мешки с тринитротолуолом пытались стрелять из винтовок. Результатом были лишь облачка желтой пыли.

Но способ разбудить дремлющего демона был найден — впервые это произошло при подрыве мелинитовой шашки вплотную к массе тринитротолуола. А затем выяснилось, что если его сплавить в монолитный блок, то надежная детонация обеспечивается стандартным капсюлем-детонатором Нобеля №8. В остальном плавленый тринитротолуол оказался таким же флегматиком, как и до плавления. Его можно пилить, сверлить, прессовать, размалывать — словом, делать что заблагорассудится. Температура плавления 80°С чрезвычайно удобна с технологической точки зрения — на жаре не потечет, но и особых затрат на плавление не требует. Расплавленный тринитротолуол весьма текуч, его можно запросто заливать в корпуса снарядов и бомб через отверстие взрывателя. В общем, воплощенная мечта военных.

Под руководством Каста в 1905 году Германия получила первые сто тонн новой взрывчатки. Как и в случае с французским мелинитом, она была строго засекречена и носила ничего не значащее название «тротил». Но спустя всего лишь год стараниями российского офицера В. И. Рдултовского тайна тротила была раскрыта, и его стали изготавливать в России.

Понятие и классификация

Выражаясь простым языком, взрывоопасные вещества – это специальные вещества или их смеси, которые при определенных условиях могут взорваться. Этими условиями могут выступать повышение температуры или давления, толчок, удар, звуки конкретных частот, а также интенсивное освещение или даже легкое прикосновение.

Например, одним из самых известных и распространенных взрывоопасных веществ считается ацетилен. Это бесцветный газ, который к тому же не имеет запаха в чистом виде и легче воздуха. Применяющемуся на производстве ацетилену свойственен резкий запах, который ему придают примеси. Широкое распространение он приобрел в газовой сварке и резке металлов. Ацетилен может взорваться при температуре 500 градусов Цельсия или при длительном соприкосновении с медью, а также серебром при ударе.

На данный момент известно очень много взрывоопасных веществ. Классифицируются они по многим критериям: состав, физическое состояние, взрывчатые свойства, направления применения, степень опасности.

По направлению применения взрывчатые вещества могут быть:

  • промышленными (используются во многих отраслях: от горного дела до обработки материалов);
  • опытно-экспериментальными;
  • военными;
  • специального предназначения;
  • антисоциального применения (зачастую сюда относятся кустарно изготовленные смеси и вещества, которые используются в террористических и хулиганских целях).

Техника безопасности при работе с взрывоопасными веществами

Список травм, которые может получить человек из-за несчастных случаев, связанных со взрывчатыми веществами, весьма и весьма обширен: термические и химические ожоги, контузия, нервный шок от удара, ранения от осколков стеклянной или металлической посуды, в которой находились взрывоопасные вещества, повреждения барабанной перепонки. Поэтому техника безопасности при работе со взрывоопасными веществами имеет свои особенности. Например, при работе с ними необходимо иметь предохранительный экран из толстого органического стекла или другого прочного материала. Также тот, кто непосредственно работает со взрывоопасными веществами, должен быть облачен в защитную маску или даже шлем, перчатки и передник из прочного материала.

Поделитесь в социальных сетях:vKontakteFacebookTwitter
Напишите комментарий