Описание ракеты
Противокорабельная крылатая ракета «Оникс» создана по нормальной аэродинамической схеме, она имеет складывающиеся крылья трапециевидной формы, а также складное оперение. Хорошая аэродинамическая форма ПКР и ее высокая тяговооруженность обеспечивает ракете высокую маневренность, позволяя уклоняться от средств ПВО и ПРО противника. Кроме того, форма ракеты 3М55 делает ее малозаметной для радиолокационных средств обнаружения неприятеля.
Силовая установка ракеты состоит из прямоточного воздушно-реактивного двигателя (ПВРД), ускорение на стартовом этапе обеспечивается твердотопливными ускорителями. Силовая установка ракеты позволяет ей достигать скорости в 2-3,5 Маха на большей части траектории полета. Потолок ракеты составляет 20 тысяч метров.
Конус воздухозаборника расположен в центре передней части ракеты, для ПКР с подводным стартом он прикрыт круглым обтекателем, который сбрасывается сразу после выхода «Оникса» на поверхность воды. Топливом ракеты служит керосин.
В воздухозаборнике находится головка наведения, аппаратура управления и боевая часть. «Оникс» способен уничтожать хорошо защищенные цели в условиях сильного радиоэлектронного противодействия, эта ракета способна определять ложные цели, самостоятельно производить захват и сопровождение цели. Головка самонаведения ракеты (ГСН) способна захватывать цель в любую погоду, поражать радиоконтрастные наземные цели.
Сразу после выхода ракеты 3М55 из пускового контейнера включается разгонный блок, который разгоняет ракету за несколько секунд до двух скоростей звука. После сгорания разгонного блока включается маршевый двигатель ракеты, который обеспечивает скорость полета примерно 2,5 Маха. Система наведения 3М55 комбинированная: на большей части траектории она инерциальная, а на этапе атаки – радиолокационная. Дальность обнаружения цели составляет 50 километров.
«Оникс» имеет на борту мощный вычислительный комплекс, радиовысотомер, систему встроенного самоконтроля.
Сразу после запуска ракета поднимается на высоту 14 км, производит захват цели, после чего она отключает свою РЛС и опускается на максимально низкую высоту (10-15 метров). В случае такого старта обеспечивается максимальная дальность полета (300 км), а также значительно снижается уязвимость ракеты от средств противовоздушной обороны.
Есть и другая возможная траектория полета: с высотой, не превышающей 10-15 метров, на всей протяженности траектории. Однако в этом случае снижается дальность полета 3М55, она составляет не более 120 км.
Первый тип траектории позволяет ракете не только захватить цель, но и выбрать наиболее важную цель (если их несколько), а также отбраковать ложные цели.
Кроме стрельбы одной ракетой, для «Оникса» возможен и залповый пуск против группы кораблей. В этом случае ракеты способны сами распределять между собой цели, не допускать дублирования при поражении, вырабатывать тактику атаки. После поражения главной цели в группе ракеты атакуют второстепенные.
В бортовую вычислительную систему заложены данные относительно возможной тактики вражеской ПВО и РЭБ, а также электронные портреты основных классов современных кораблей и их вероятного построения. Оперируя этими данными, ракеты могут определить, что именно они атакуют: АУГ, конвой или десантную группу, после чего самостоятельно выбрать наиболее эффективную тактику, составить эффективный план атаки.
Каждая ракета находится в специальном транспортно-пусковом контейнере, который обеспечивает защиту изделия при его транспортировке. Угол запуска ракеты – от 15 до 90 градусов, что позволяет располагать их в пусковых установках наклонного и вертикального старта. Ракета в контейнере очень удобна для хранения (в том числе и длительного) и транспортировки. К контейнеру не нужно подводить жидкости или газ, для проведения технического осмотра ракету можно не извлекать, все действия проводятся дистанционно.
Авиационная модификация «Оникса» имеет некоторые отличия от ракет, устанавливаемых на надводные корабли и подводные лодки. У нее более короткий и облегченный стартовый ускоритель, сопло и воздухозаборник закрыт специальными обтекателями.
Сравнительная характеристика
Общие сведения и основные тактико-технические характеристики советских баллистических ракет третьего поколения | ||||
---|---|---|---|---|
Наименование ракеты | РСД-10 | УР-100 НУ | МР УР-100 | Р-36М, Р-36М УТТХ |
Конструкторское бюро | МИТ | НПО «Машиностроение» | КБ «Южное» | |
Генеральный конструктор | А. Д. Надирадзе | В. Н. Челомей | В. Ф. Уткин | |
Организация-разработчик ЯБП и главный конструктор | ВНИИЭФ, С. Г. Кочарянц | ВНИИП, О. Н. Тиханэ | ВНИИЭФ, С. Г. Кочарянц | |
Организация-разработчик заряда и главный конструктор | ВНИИЭФ, Б. В. Литвинов | ВНИИЭФ, Е. А. Негин | ||
Начало разработки | 04.03.1966 | 16.08.1976 | 09.1970 | 02.09.1969 |
Начало испытаний | 21.09.1974 | 26.10.1977 | 26.12.1972 | 21.02.1973 |
Дата принятия на вооружение | 11.03.1976 | 17.12.1980 | 30.12.1975 | 30.12.1975 |
Год постановки на боевое дежурство первого комплекса | 30.08.1976 | 06.11.1979 | 06.05.1975 | 25.12.1974 |
Максимальное количество ракет, стоявших на вооружении | 405 | 360 | 150 | 308 |
Год снятия с боевого дежурства последнего комплекса | 1990 | 1995 | ||
Максимальная дальность, км | 5000 | 10000 | 10000+10320 | 11000+16000 |
Стартовая масса, т | 37,0 | 105,6 | 71,1 | 210,0 |
Масса полезной нагрузки, кг | 1740 | 4350 | 2550 | 8800 |
Длина ракеты, м | 16,49 | 24,3 | 21,6 | 36,6 |
Максимальный диаметр, м | 1,79 | 2,5 | 2,25 | 3,0 |
Тип головной части | разделяющаяся головная часть с блоками индивидуального наведения | |||
Количество и мощность боевых блоков, Мт | 1×1; 3×0,15 | 6×0,75 | 4×0,55+0,75 | 8×0,55+0,75 |
Стоимость серийного выстрела, тыс. руб. | 8300 | 4750 | 5630 | 11870 |
Источник информации : Оружие ракетно-ядерного удара. / Под ред. Ю. А. Яшина. — М.: Издательство МГТУ имени Н. Э. Баумана, 2009. — С. 25–26 — 492 с. — Тираж 1 тыс. экз. — ISBN 978-5-7038-3250-9. |
Ракетный комплекс “Сармат” — характеристики и разработка
Разработкой МБР “Сармат” занимался ГРЦ им. Макеева. Точной информации о начале разработки нет, однако известно, что НПО “Энергомаш” получило заказ на разработку двигателя в 2013 году. Первые его успешные испытания прошли спустя три года.
В 2018 году состоялись три бросковых испытательных пуска «Сармата» с полигона Плесецк. ”Бросковыми испытаниями” называется эксперимент, в процессе которого ракета выходит из шахты и при этом запускается двигатель. Другими словами, отрабатывается самый первый этап запуска. Надо сказать, изначально считалось, что ракета имеет всего две ступени, но после появления официальных изображений выяснилось, что она трехступенчатая.
В апреля нынешнего года МО России сообщило о первом полноценном запуске МБР “Сармат” с того же космодрома в Архангельской области. Испытания также прошли успешно. Ожидается, что в 2022 году первые серийные образцы ракеты начнут поступать в 62-ю и 13-ю ракетную дивизии. Ракета будет производиться на Красноярском машиностроительном заводе.
По оценкам экспертов, «Сармат» обеспечит России ядерный щит на ближайшие 30-40 лет
По имеющимся данным, для ракет “Сармат” не нужно строить новые шахтные пусковые установки. Потребуется лишь минимальная доработка существующих шахт. Некоторые эксперты утверждают, что ракеты будут выпускаться в двух вариантах — для нанесения ударов по Западной Европе и США. Дальность полета ракеты второго типа составляет 16 тыс. км. Вес ее достигает 150-200 тонн, а полезная нагрузка достигает 5 тонн. Ракета, нацеленная на Западную Европу, легче за счет меньшего объема топлива. Ее вес составляет 100-120 тонн, а дальность полета — 9-10 тыс. км.
Одна ракета может нести 10-15 боеголовок, однако количество боеголовок зависит от их мощности. К примеру, при использовании 10 боеголовок, мощность каждой из них оценивается в 750 Кт. Но эти данные касаются обычных боевых элементов. В случае современных маневрирующих боеголовок, их может быть всего три, каждая при этом весит около тонны.
Но, следует иметь в виду, что информация о ракете засекречена. Поэтому приведенные данные не официальные, и собраны из разных источников. Вполне возможно, что в будущем данные будут корректироваться. Ну а напоследок рекомендуем выяснить, что случится с Землей в случае ядерной войны, если эти ракеты когда-то будут применены.
ТОП-5 самых мощных ядерных ракет в мире
М51
Франция на сегодняшний день является третьей по ядерному арсеналу страной. Впереди только США и Россия. Французская межконтинентальная баллистическая ракета M-51
представляет собой самое грозное оружие в распоряжении этой страны.
M-51. Фото из открытых источников
Дальность полета ракеты составляет 10 000 километров. Она поступила в распоряжении стратегических сил Франции в 2010 году. Ее размещают на субмаринах класса Triomphant
. На таких подводных лодках имеются 16 пусковых шахт для M51. Головная часть каждой ракеты оснащена четырьмя термоядерными блоками по 300 килотонн или шесть блоков по 100 кт.
МБР оснащена большим количеством систем, усложняющих ее перехват вражескими средствами противовоздушной обороны. Ее высокая точность попадания не оставит противникам ни единого шанса. Точность попадания – 200 метров. Стартовая масса равна 56 тоннам.
UGM-133A Трайдент II
Данная межконтинентальная баллистическая ракета создана в США. Она обладает дальностью 11 300 километров. Она базируется на субмаринах класса Огайо. Впервые ее пуск был совершен в 1987 году.
Конструкторы наделили ее продвинутым блоком управления и наведения, что обеспечивает впечатляющую максимальную точность попадания – 90 метров. Высокая дальность поражения целей и вместе с морским базированием, делает ее настоящим смертоносным орудием. Восемь термоядерных блоков по 475 килотонны каждый могут с легкостью стереть с лица земли несколько целей противника. Стартовая масса- 59 тонн.
DongFeng 5A
На третьем месте расположилась самая дальнобойная китайская ракета. Она способна поражать цели на расстоянии 13 000 километров. Ее изначально разрабатывали для уничтожения стратегических целей на территории США. О поступлении этой ракеты на дежурство стало известно в 1993 году. Для осуществления управления межконтинентальной баллистической ракетой используется бортовой компьютер и инерциальная система наведения.
Головная часть разделяется, что дает возможность нанести непоправимый урон нескольким важным целям на вражеской территории. Средняя точность ракеты равна 1000 метрам. Однако согласно некоторым данным она в два раза выше – 500 метров. Стартовая масса DongFeng 5A
равна 183 тоннам. В боевое оснащение МБР входит шесть ядерных блоков индивидуального наведения. Каждый из них имеет мощность в 350 килотонн.
Примечателен тот факт, что на сегодняшний день в распоряжении Китая находится 36 таких ракет. 13 из них направлены на США.
Р-29РМУ2 Синева
На втором месте расположилась российская МБР третьего поколения. Она встала на дежурство в 2007 году. «Синева» способна уничтожать цели на расстоянии в 11500 километров, что дает возможность ликвидировать практически любого врага.
При этом такие межконтинентальные баллистические ракеты базируются на подводных лодках. Таким образом, они могут «достать» любую вражескую цель на Земле. Головную часть оснастили несколькими ядерными боеголовками индивидуального наведения. Управления полетом МБР происходит при помощи ГЛОНАСС. Запуск ракеты можно осуществлять с глубины 55 метров. Стартовая масса Р-29РМУ2 Синева
составляет 40 тонн. Точность попадания равна 500 метрам. В боевое оснащение входит десять ядерных блоков индивидуального наведения. Каждый из них обладает мощностью 100 килотонн.
P-36M (СС-18 Сатана)
Первое место получила самая мощная ракета не только в России, а и в мире. Созданная еще в советские времена P-36M
обладает фантастической дальностью поражения цели – 16000 километров. Ее десять термоядерных блоков могут превратить в горстку пепла 10 индивидуальных целей.
Благодаря эффективной системе преодоления противоракетной обороны не даст возможности противникам помешать ей достигнуть цели. Время готовности «Сатаны» лишь немного превышает минуту. Это значит, что всего через минуту после начала подготовки ракеты, она может вылететь из шахты и сравнять с землей любого агрессора, который решил посягнуть на целостность страны. Именно она в свое время поставила жирную точку в гонке вооружений между Москвой и Вашингтоном.
Американские военные называли эту МБР не иначе как «оружие судного дня». Точность попадания P-36M равна 220 метрам. Стартовая масса составляет 211 тонн. Боевое оснащение состоит из десяти термоядерных блоков, по 800 килотонн мощности каждый.
Функции и технологии
Авангард – стратосферный планирующий аппарат с межконтинентальными баллистическими ракетами на низкой околоземной орбите (НОО). Затем он отделяется от ракеты и опускается в верхние слои атмосферы . При этом он скользит по волнообразной траектории к целевой области. Оказавшись там, он попадает в атмосферу Земли и летит к месту назначения.
Об Авангарде известно немного, хотя доступная информация поступает из российских государственных СМИ или из анализов западных экспертов по вооружениям. Авангард использует как минимум две планирующие ракеты : типа 15Ю-71 с обычной боевой частью и меньшую 15Ю-74 с ядерной боевой частью . В зависимости от источника взрывная сила этой боевой части должна составлять 150 кТл или 2 МТ. В компьютерной анимации, представленной Россией, планирующая ракета имеет треугольную геометрию фюзеляжа с расчетной длиной 5,4 м. Для запуска «Авангарда » Ракетные войска стратегического назначения России используют модифицированные межконтинентальные баллистические ракеты УР-100Н ( индекс GURWO : RS-18 , Кодовое название НАТО : SS-19 stiletto). Эти модифицированные ракеты получили обозначение УР-100Н-УТТЧ или А35-71, а вся система также получила обозначение 15А35П . В будущем должна появиться возможность оснащения разрабатываемой в настоящее время межконтинентальной баллистической ракеты РС-28 «Сармат» планирующими ракетами « Авангард » . МБР УР-100Н-УТТЧ – двухступенчатые ракеты с жидкостными ракетными двигателями . Вместо машины для входа в атмосферу (также известной как автобус ) для машины для входа в атмосферу MIRV эти ракеты оснащены одним планером Awangard. Из-за размеров планирующей ракеты для ракеты пришлось разработать увеличенный обтекатель полезной нагрузки . Поскольку модифицированные таким образом ракеты значительно длиннее оригинальной модели, они должны размещаться в ракетных шахтах гораздо более крупных межконтинентальных ракет Р-36М (индекс GURWO: RS-20A, кодовое название НАТО: SS-18 Satan). Ракета УР-100Н-УТТЧ доставит Авангард на низкую околоземную орбиту (НОО). Поскольку межконтинентальные баллистические ракеты сильно разгоняются и достигают высоких скоростей, ракета УР-100Н-УТТЧ обеспечивает очень высокую начальную скорость планирующей ракеты. Так добился з. Например, ЛГМ-118 Пискипер имеет на скорость выгорания свыше 24000 км / ч. Планирующая ракета отделяется от ракеты на высоте около 100 км. Планирующая ракета теперь сначала следует по заданной баллистической траектории, а затем спускается под прямым углом к верхним слоям атмосферы . При этом он скользит по волнообразной траектории к целевой области. По российской информации, планирующая ракета должна иметь возможность маневрировать и выполнять маневры уклонения. На этом этапе полета планирующая ракета должна развивать скорость полета 20-27 Маха . Теплота трения и сжатие создают горячую плазму на поверхности ракеты. Это может достигать температуры 2 000–2 500 градусов по Цельсию (° C) . Столь высокие температуры делают незаменимым теплозащитный экран . По российской информации, для этого потребовалась разработка специальных композиционных материалов , способных выдерживать такие температуры. Как управляется и управляется ракета, не опубликовано. Поскольку ракета приближается к Земле, возможно использование инерциальной навигационной системы . Поскольку ракета находится в ионизированной плазме, посылать и принимать электромагнитные волны для нее практически невозможно . Управление с помощью системы спутниковой навигации можно исключить. Однако дистанционное управление с помощью ультракоротких волн возможно. Управление и рулевое управление, вероятно, осуществляется с помощью управляющих форсунок. Есть также предположения о приводе с ГПВП . На расстоянии около 500 км от цели планирующая ракета начинает возвращаться в атмосферу Земли. Пролетая через земную атмосферу с гиперзвуковой скоростью , планирующая ракета преобразует большое количество кинетической энергии в тепло и продолжает нагреваться. Скорость ракеты снижена примерно до 14-15 Махов. Управление на этом последнем этапе полета, вероятно, осуществляется с помощью .
По российской информации, межконтинентальные дальности должны быть достигнуты с Авангардом. Утверждается, что его маневренность дает Awangard преимущество перед обычными межконтинентальными баллистическими ракетами. Из-за непрямой траектории его действительный целевой район для систем противоракетной обороны трудно поддается расчету. По словам командующего Главнокомандующего в Стратегическом командовании США (USSTRATCOM), Джон E Хайтен , нет в настоящее время нет защиты от таких систем вооружения.
Миномётный старт МР УР-100
Основная статья: Миномётный старт
Для ракеты МР УР-100 одной из первых в СССР была практически реализована «миномётная» схема старта, при которой ДУ первой ступени запускается после выхода ракеты из ТПК под давлением газов, вырабатываемых специальными пороховыми газогенераторами. Для обеспечения миномётного старта на нижнюю часть ракеты устанавливается поддон с опорно-обтюрирующим поясом, а на корпус ракеты — опорные бандажи, которые сбрасываются после выхода ракеты из ТПК. При миномётном старте ракеты газы, вырабатываемые в пороховом аккумуляторе давления, поступают в объём между верхним и нижним днищами поддона. В момент старта принудительно разрывается механическая связь между днищами, и под давлением газов, действующих на верхнее днище поддона, ракета вместе с днищем выбрасывается из ТПК. Нижнее днище поддона с закреплёнными на нём ПАД остаётся в контейнере.
Технические характеристики
Таблица 2
Наименование параметра | Значение параметра |
Рабочая среда | инертный газ |
Диапазон расходов газа, см3/мин | от 1,0 до 60,0 |
Пределы допускаемой относительной погрешности при вычислении объемного расхода газа, %, при использовании объёма: — V1 (от 1 до 8 см3/мин) — V2 (от 8 до 60 см3/мин) | ±0,5 ±0,2 |
Калиброванный объём V1, см3 | 5,119 |
Пределы допускаемой относительной погрешности объёма V1, % | ±0,25 |
Калиброванный объём V2, см3 | 35,577 |
Пределы допускаемой относительной погрешности объёма V2, % | ±0,1 |
Объём разделительной камеры мерного блока Vp, см3 | 85,8 |
Пределы допускаемой относительной погрешности объёма Vp, % | ±1 |
Пределы допускаемой относительной погрешности измерений интервалов времени между срабатываниями датчиков уровней ФУЖ-0, ФУЖ-1 и ФУЖ-2, % | ±0,02 |
Атмосферное давление, кПа | 84 — 107 |
Диапазон измерений давления рабочей среды, кПа | 60 — 110 |
Пределы допускаемой абсолютной погрешности измерений давления, Па | ±33 |
Диапазон измерений напряжения РРГ, В | от 0 до 10 |
Наименование параметра | Значение параметра |
Пределы допускаемой относительной погрешности измерений напряжения РРГ, % | ±0,3 |
Температура окружающей среды и рабочей среды, °С | 25±10 |
Пределы допускаемой абсолютной погрешности измерений температуры, °С | ±0,7 |
Относительная влажность в воздушной полости РДК , %. | 100 |
Относительная влажность окружающего воздуха, %. | до 80 |
Пределы допускаемой погрешности измерений относительной влажности, % | ± 2,5 |
Напряжение питания сети — переменный ток, В | (220±20), 50 Гц |
Масса, не более, кг | 12 |
Г абаритные размеры, не более, мм | 320x650x410 |
Срок службы, не менее, лет | 10 |
Конструкция
15А15 проектировалась при ограничении на геометрические характеристики её транспортно-пускового контейнера (под существовавшие ШПУ ракет РС-10).
Двухступенчатая ракета МР УР-100 выполнена в двух диаметрах: корпус первой ступени имеет диаметр равный 2,25 м., второй — 2,1 м. Ступени соединяются между собой слабоконическим соединительным отсеком, который при разделении ступеней разрушается удлинённым кумулятивным зарядом, опоясывающим соединительный отсек в его средней части.
Конструкция первой ступени
В состав корпуса первой ступени ракеты входят также хвостовой и топливные отсеки. Топливный отсек, состоящий из верхней ёмкости (для окислителя) и нижней (для горючего), — сварной конструкции из алюминиево-магниевого сплава. Ёмкости (баки) окислителя и горючего разделены сферическим промежуточным днищем. Нижнее сферическое днище бака горючего направлено выпуклостью вовнутрь бака, образуя вместе с хвостовым отсеком полость для размещения ступени.
ДУ первой ступени 15А15 состоит из двух двигателей:
- основного (маршевого) — 15Д168
- рулевого — 15Д167.
Однокамерный маршевый ЖРД с турбонасосной системой подачи топлива выполнен по замкнутой схеме и закреплён на ступени неподвижно. В состав рулевого двигателя входят четыре поворотные (шарнирно закреплённые) камеры сгорания и один ТНА. В рулевом двигателе реализована открытая схема процесса сгорания компонентов топлива.
Конструкция второй ступени
ДУ второй ступени 15Д169 (РД-862) ракеты 15А15 состоит из однокамерного, неподвижно закреплённого на корпусе ступени ЖРД с турбонасосной подачей компонентов топлива и замкнутой схемой. Этот двигатель имеет ряд оригинальных решений по рабочим процессам: по системе охлаждения камеры сгорания, по процессу газогенерации и другим, которые в конечном счёте позволили получить рекордную величину удельного импульса тяги для ЖРД такого класса (3300 м/с в пустоте). Оригинален и способ создания управляющих сил и моментов при полёте второй ступени: управление по тангажу и рысканью обеспечивается вдувом газа в закритическую часть сопла ЖРД, а по крену — четырьмя небольшими соплами, рабочее тело для которых вырабатывается в газогенераторе ТНА двигателя.
Головная часть
К корпусу второй ступени 15А15 с помощью разрывных болтов крепится разделяющаяся головная часть с четырьмя боевыми блоками, прикрытая обтекателем с изменяемой геометрией. В состав РГЧ входит герметичный приборный отсек, в котором размещается система управления ракетой, и твердотопливная ДУ разведения боевых блоков.
Транспортно-заряжающая машина 9Т218-1 комплекса “Точка-У”
Кроме транспортной машины 9Т238 в состав комплекса так же входит транспортная машина 9Т222. Внешне они очень похожи и возможности по транспортировке у них идентичны. Обе являются активным автопоездом – т.е. мосты полуприцепа являются ведущими. Принципиальная разница между этими агрегатами в способе передачи крутящего момента от тягача к мостам полуприцепа – в одном случае передача гидравлическая, а в другом – механическаяОрганизационно комплекс входит в состав МСД или ТД, а также в отдельные бригады ( по 2-3 РДН), в дивизионе – 2-3 стартовые батареи, в батарее 2-3 пусковые установки. . Боевая работа проводится с ходу расчетом из 3-х человек в минимальные сроки. Благодаря наличию в ПУ системы топопривязки, прицеливания, средств связи, а также средств жизнеобеспечения при действиях на зараженной местности расчет ПУ может осуществлять пуски ракет из кабины.Ракетный комплекс 9К79 (9К79-1) может транспортироваться самолетами АН-22, ИЛ-76 и т.д. Ракеты, ракетные части и БЧ могут транспортироваться вертолетами типа МИ-6, В-12, МИ-8.
Носители
Ракетами серии «Калибр-НК» и «Калибр-ПЛ» оборудуются следующие корабли иностранных и российских флотов
- Фрегаты проекта 22350;
- Фрегаты проекта 11356;
- Фрегаты типа «Тальвар»;
- Фрегаты типа «Шивалик»;
- Корветы проекта 20385;
- Ракетные корабли проекта 11661 (в зависимости от модификации);
- Малые ракетные корабли проекта 21631;
- Малые ракетные корабли проекта 22800;
- Патрульные корабли проекта 22160 (в зависимости от модификации);
- Подводные лодки проекта 955 «Борей» (в качестве неосновного вооружения);
- Подводные лодки проекта 885 «Ясень»;
- Подводные лодки проекта 636 «Варшавянка»;
- Подводные лодки проекта 677.
По словам Виктора Чиркова, бывшего главнокомандующего ВМФ в скором будущем большинство кораблей ВМФ России советской постройки, в том числе и крейсер проекта 1144, эсминцы проекта 956 и противолодочные корабли проекта 1155, после модернизации, получили на вооружение ракетные комплексы с ракетами Оникс и Калибр.
В последние годы создано, сдано или сдается в эксплуатации ПО и средства загрузки для ракетных комплексов 3К14, 3М55, 9К, 3К96 и для малогабаритного торпедного комплекса «Пакет», находящихся на современных кораблях ВМФ РФ. Семейство вертикальных ПУ надводных кораблей типа 3С14 обеспечивает размещение на НК проектов 1161К, 21631, 11356М изделия комплекса 3К14, а на НК проектов 22350, 20385, 11442М, к тому же еще и изделий комплексов 3М55 и 9К ОКБ. КБСМ является создателем и поставщиком серийно изготавливаемых транспортно-пусковых стаканов из композиционных материалов, имеющих разрушаемую крышку для изделий комплекс 9К и 3К14. Для загрузки изделий указанных комплектов в ПУ НК разработаны комплексы средств погрузки типа СМ-456.
Вряд ли неприменимость ПКРК «Оникс» в некоторых УКСК как-то связана с размерами боеприпасов, так как 3М14 и 3М55 имеют приблизительно одинаковую длину (по некоторой информации около 8,1 и 8,6 метров). Вероятней всего боевой комплект 3С14 за счет системы управления урезается искусственно. Особенно нелепо это выглядит с 20385 (с «Ониксом») и 11356 (без «Оникса).
Операторы
- Россия.
- Китай.
- Индия.
История сотворения
Решение в пользу разработки ракеты «Булава» было принято в 1998 году вновь назначенным на пост главнокомандующего ВМС Рф Владимиром Куроедовым после трёх неудачных испытаний законченного более чем на 70 % комплекса стратегического орудия «Барк». В итоге Совет безопасности РФ отказался от разработки Миасского КБ им. Макеева (разработчика всех русских баллистических ракет подводных лодок — БРПЛ, кроме Р-31) и передал разработку новейшей морской стратегической ракеты Булава Столичному институту теплотехники.
В качестве аргументов в пользу такового решения именовалось рвение к унификации морских и сухопутных твёрдотопливных ракет. Противники этого решения указывали на непонятные плюсы от унификации, отсутствие у МИТ опыта сотворения ракет морского базирования, необходимость переделки АПЛ «Юрий Долгорукий», строящейся с 1994 года на Северодвинском машиностроительном предприятии «Севмаш» и сначало проектировавшейся под «Барк».
Создание ракет «Булава» будет развёрнуто на ФГУП «Воткинский завод», где уже выполняются ракеты «Тополь-М». По заявлению разработчиков, конструктивные элементы обеих ракет в высочайшей степени унифицированы.
Видео: Короткий документальный фильм Удар Булавы
После удачных испытаний Булавы 29 июня 2007 принято решение о серийном производстве более отработанных узлов и деталей ракеты.