Буревестник – крылатая ракета с атомным двигателем

Примечания

  1. Итоги науки и техники : Воздушный транспорт. — М.: Всесоюзный институт научной и технической информации, 1973. — С. 94.
  2. . «РИА Новости» (22 ноября 2018).
  3. : «Burevestnik nuclear-powered cruise missile».
  4. .
  5. , Long range nuclear powered cruise missile ‘Burevestnik’, pp. 8—10.
  6. .
  7. Роман Азанов. . ТАСС (1 марта 2018).
  8. . «РИА Новости» (23 марта 2018).
  9. ↑ . Kremlin.ru (1 марта 2018).
  10. , Что известно.
  11. Александр Шарковский. . «Независимая газета» (17 февраля 2019).
  12. Шон Галлахер. . ИноСМИ.RU (26 марта 2018). — «Один мегаватт, безусловно, достижим».
  13. Steve Weintz.  (англ.). The National Interest (7 July 2018).
  14. . Lenta.ru (27 февраля 2019).
  15. : «В январе на одном из полигонов успешно завершен важнейший этап испытаний крылатой дозвуковой ракеты комплекса «Буревестник» – испытания ядерной энергетической установки».
  16. Олег Корякин. . «Российская Газета» (19 июля 2018).
  17. Александр Бойко. . «Комсомольская правда» (22 марта 2018).
  18. . «Известия» (19 июля 2018).
  19. Дзагуто В., Самохина С., Сафронов И. . Газета «Коммерсантъ» (5 июля 2018).
  20. Ankit Panda.  (англ.). (23 August 2018).
  21. . ТАСС (19 июля 2018).
  22. . ТАСС (19 июля 2018).
  23.  (англ.). CNBC (22 May 2018).
  24. . «РИА Новости» (22 мая 2018).
  25.  (англ.). CNBC (21 May 2018).
  26. . «РИА Новости» (22 августа 2018).
  27.  (англ.). (6 February 2019).
  28.  (англ.). Business Insider (6 February 2019).
  29. Ryan Pickrell.  (англ.). Business Insider (21 March 2019).
  30. Райан Пикрелл. . ИноСМИ.RU (8 февраля 2019).
  31. .
  32. , Степень готовности.
  33. . Greenpeace (8 августа 2019).
  34. Александр Емельяненков. . «Российская Газета» (10 августа 2019).
  35. . Greenpeace (14 августа 2019).
  36. Анна Трунина. . РБК (12 августа 2019).
  37. . Госкорпорация «Росатом» (10 августа 2019).
  38. . «Интерфакс» (10 августа 2019).
  39. Рамм А., Крецуп Р., Козаченко А. . Газета «Известия» (15 августа 2019).
  40. Никола Крастев. . «Радио Свобода» (10 августа 2019).
  41. . RT на русском (13 августа 2019).
  42. . «» (10 августа 2019).
  43. . «РИА Новости» (13 августа 2019). — «Дональд Трамп блефует, связывая взрыв в Архангельской области с ракетой „Буревестник“: судя по всему, он базируется даже не на докладах разведки, а на публикациях СМИ».
  44. Антон Лавров. . «Известия» (26 февраля 2019).
  45. Sebastien Roblin.  (англ.). The National Interest (18 August 2019). Дата обращения 28 декабря 2019.
  46.  (англ.). Stratfor. Дата обращения 27 августа 2019.
  47. Ryan Pickrell. . Business Insider. Дата обращения 21 марта 2019.
  48. ИноСМИ ru 2000-2019. . ИноСМИ.Ru (8 февраля 2019). Дата обращения 21 марта 2019.
  49. Sebastien Roblin.  (англ.). The National Interest (18 August 2019). Дата обращения 28 декабря 2019.
  50. Amy Mackinnon, Lara Seligman.  (англ.). Foreign Policy. Дата обращения 28 декабря 2019.

Буревестник – крылатая ракета с ядерной энергоустановкой

Поэтому говорить о невозможности для России создать крылатую ракету с ядерной энергоустоновкой Буревестник совершенно неуместно. Главной проблемой, как было сказано выше, были большие габариты, которые не были принципиальны для огромного воздушно-космического самолета, но оказывались критичны для ракеты, размерами сопоставимой с современным «Калибром» или X-101.

В президентской речи были упомянуты материалы, используемые в гиперзвуковом крылатом блоке Авангард, имеющие жаростойкость в 2000 градусов по Цельсию. При такой температуре аппарат будет выглядеть как раскаленный метеорит. Это бесспорно революция в материаловедении, которая, очевидно, и позволила создать один из самых сложных компонентов ядерного ракетного двигателя для крылатой ракеты – эффективный теплообменник малых размеров.

В условиях земной атмосферы такой ракете совсем не обязательно иметь при себе запас рабочего тела, поскольку им может являться воздух. Осуществляя забор воздуха и направляя его в теплообменник, можно получить реактивную струю необходимых параметров. Возможен вариант ядерного реактора в качестве электростанции, которая обеспечивает энергией работу электродвигателей с турбинами. Какой именно использовался принцип, конкретно не оглашалось, однако в любом случае использование крылатой ракеты с ядерным двигателем позволяет получить невероятную дальность. Такой системе можно летать по Земле много дней подряд, преодолевая тысячи километров, а энергия в реакторе не иссякнет. В июле 2018 года были проведены успешные испытания крылатой ракеты Буревестник – характеристики, которые были заявлены ранее, соответствуют расчетным.

Быстрые и медленные нейтроны

Но почему-то неспециалисты дружно решили, что основой двигателя крылатой ракеты должен стать реактор на быстрых нейтронах. Объяснение простое: ради компактности устройства в нем нужно применять ядерное топливо высокого обогащения, а тогда замедлитель оказывается не нужен, ведь он увеличивает сечение деления у урана-235, мало влияя на сечение захвата ураном-238. Кроме того, медленные нейтроны имеют ту же температуру, что и замедлитель, а значит, их энергия растет вместе с температурой в реакторе, уменьшая их преимущества. Действительно, «Бук» — самый массовый космический реактор — работал на быстрых нейтронах, а его наследник «Топаз» — на промежуточных. Однако реактор на тепловых нейтронах может быть не менее компактным: замедлитель из гидрида циркония позволяет создать реактор с диаметром активной зоны меньше полуметра, что и было реализовано в советском ЯРД. А для снижения температуры замедлитель должен охлаждаться отдельным потоком теплоносителя, тогда можно реализовать все преимущества медленных нейтронов. Кроме того, в реакторе на тепловых нейтронах можно использовать весьма экзотический изотоп — америций-242м. Несмотря на то что сейчас производство этого изотопа не налажено, организовать его гораздо проще, чем производство полумифического калифорния — в отработанном ядерном топливе америций-241 накапливается сам собой, и его можно выделять достаточно простыми химическими реакциями (и его выделяют, так как он используется, например, в некоторых детекторах дыма). Если из оксида америция-241 спрессовать таблетки и загрузить их в реактор на быстрых нейтронах, тот же БН-800, то можно быстро накопить достаточное количество америция-242м. Буква в конце названия означает, что это ядерный изомер, находящийся в возбужденном состоянии. Дело в том, что у обычного америция-242, чьи ядра находятся в наинизшем энергетическом состоянии, период полураспада всего 16 ч, а у ядра 242м — целых 140 лет. А зачем он нужен? С замедлителем из гидрида циркония он имеет критическую массу меньше 50 г! Соответственно, реактор на нем будет иметь диаметр (без отражателя) порядка 10 см. Такой реактор, правда, с водяным замедлителем, предлагалось использовать в медицине, для нейтронно-захватной терапии. А вот чего точно не будет в реакторе для крылатой ракеты, так это торцевых отражателей нейтронов. Для них просто не остается места: с одной стороны должен быть воздухозаборник, с другой — сопло.

РАКЕТЫ С ЯДЕРНЫМ СЕРДЦЕМ

Как видим, у “Бури” и “Навахо” были одинаковые проблемы – невозможность получить проектную дальность полета с помощью прямоточного двигателя и конкуренция МБР.

Поэтому в 1956 году в США решили создать межконтинентальную крылатую ракету “Плутон” с ядерной энергетической установкой.

Источником энергии ядерных прямоточных двигателей является не химическая реакция горения топлива, а тепло, вырабатываемое ядерным реактором в камере нагрева рабочего тела. Воздух из входного устройства в таком ПВРД проходит через активную зону реактора, охлаждая его, нагревается сам до рабочей температуры (около 3000 градусов по Кельвину), а затем истекает из сопла со скоростью, сравнимой со скоростями истечения для самых совершенных химических ЖРД.

В рамках новой программы в США в 1964 году были проведены стендовые огневые испытания ядерного прямоточного двигателя Tory-IIC (режим полной мощности 513 МВт в течение пяти минут с тягой 156 кН).

Естественно, что газы, вылетавшие из сопла прямоточного двигателя, имели высочайший уровень радиоактивности. Один из создателей проекта предложил превратить этот явный в мирное время недостаток в преимущество в случае войны: ракета должна была продолжать летать над СССР после сброса боевой части до саморазрушения или остановки двигателя.

К 1965 году все работы по “Плутону” были прекращены. Летные испытания не проводились. Не был даже построен планер ракеты. Вместо него ограничились макетами носовой части, а также воздухозаборника и средней части корпуса.

“Плутон”, “Навахо”, “Снарк”, “Буря” и “Буран” не выдержали конкуренции с МБР. В 1960–1970-х годах ни одна из сверхдержав не располагала ПРО для перехвата хотя бы десятой части МБР противника. Сейчас ситуация кардинально изменилась, и межконтинентальные крылатые ракеты вновь оказались востребованными.

Александр Борисович Широкорад – писатель, историк.

Ядерный двигатель

Пытаясь раскрыть “тайну” ядерного двигателя, многие специалисты в России и за рубежом предполагают, что он произошел от известной советской разработки – твердотопливного ракетного двигателя РД-0410.

Действительно, с 1965 по 1985 годы по этому двигателю был проведен колоссальный объем работ, в результате которых удалось создать образец двигателя массой около 2 тонн (с радиационной защитой), удельной тягой около тонны и рабочим ресурсом работы – 1 час. С таким коротким временем работы крылатая ракета вряд ли далеко улетит и тем более не сможет летать неограниченное время, согласитесь. Кстати, у нас на основе РД-0410 получились надежные ядерные энергоустановки для космических аппаратов, но это тема для отдельной статьи. Поэтому продолжу про крылатую ракету.

Неуловимые: какие советские самолеты не смогли догнать ВВС Израиля

В качестве прародителя двигателя для “Буревестника” мог выступить только авиационный двигатель, а точнее – ядерная авиационная установка с прямоточным или турбореактивным двигателем. Разработки таких двигателей велись в СССР и США с 50-х годов прошлого века.

Пионерами в разработке таких двигателей стали американцы, начавшие в 1946 году проект NEPA (Nuclear Energy for the Propulsion of Aircraft – ядерная энергия для авиационной силовой установки). Затем были проект AEC (Atomic Energy Commission) и масштабная программа ANP (Aircraft Nuclear Propulsion, самолет с ядерной энергетической установкой), в рамках которой разработали экспериментальные реакторы ASTR и Р-1, а также провели испытательные полеты летающих лабораторий на основе бомбардировщиков В-36. Однако в 1961 году программа ANP была закрыта президентом США Кеннеди, который через официальное письмо уведомил о том, что у самолета с ядерной установкой в ВВС США нет перспективного будущего.

В СССР такие разработки начались в 1947 году с научно-исследовательских работ, результатом которых стало Постановление Совета Министров СССР № 1561-868 от 12 августа 1955 года, согласно которому к работам по созданию самолетов с ядерными авиационными двигателями (ЯАД) привлекались авиационные КБ – Мясищева, Туполева и Лавочкина, а также ведущие КБ в области двигателестроения – Кузнецова, Люльки и Бондарюка. Наиболее перспективным решением в создании ЯАД оказался проект ОКБ А. М.Люльки, в котором рассматривались ядерные турбореактивные двигатели в двух вариантах: “соосной” схемы и схемы “коромысло”.

Реактивный таран: как Су-15 сбил самолет-нарушитель с военным грузом

Несмотря на то, что это решение было вполне годным для установки на самолеты, работы над “атомолетами” был прекращены, так как не было найдено решение безопасной “наземной эксплуатации и защиты экипажа, населения и местности в случае вынужденной посадки самолета с ЯАД”. Результаты работ положили на полку архива, с которой их достали тогда, когда в области разработки компактных ядерных реакторов Россия стала единственной страной в мире.

Да, на “Буревестнике” стоит ЯАД с компактным ядерным реактором – созданный благодаря современным российским технологиям, который позволяет крылатой ракете лететь неограниченное время с дозвуковой скоростью на любое расстояние.

“СНАРК” И “НАВАХО”

По той же схеме создавались крылатые ракеты большой дальности и в США. Разница лишь в том, что в СССР пропустили этап создания дозвуковой крылатой ракеты с обычным воздушно-реактивным двигателем и сразу перешли к прямоточным двигателям.

Межконтинентальная дозвуковая крылатая ракета с турбореактивным двигателем SM-62 “Снарк” начала разрабатываться в 1947 году фирмой Northrop. Внешне ракета была похожа на реактивный истребитель со стреловидным крылом с углом стреловидности 45 градусов.

Старт ракеты происходил с пусковой установки, имевшей небольшой угол наклона к горизонту. Для взлета использовались два пороховых ускорителя, работавшие в течение 4 секунд. В хвостовой части ракеты размещался маршевый турбореактивный двигатель J-57 фирмы Pratt & Whitney, обеспечивавший дозвуковую скорость полета.

Я называю ракету “Снарком”, но первоначально, в 1947–1951 годах, ее именовали SSM-A-3, с 1951 по 1955 год – В-62, а далее – SM-62.

Обратим внимание на бомбардировочный индекс В-62: в те времена ракеты называли “беспилотным бомбардировщиком”. Кстати, в СССР до 30 октября 1959 года крылатые ракеты именовались самолетами-снарядами

По проекту “Снарк” должен был лететь на высоте до 15,3 км и на дальность до 10,2 тыс. км. Ядерная боевая часть W39 имела мощность 3,3 Мт.

“Снарк” летал почти с той же скоростью, что и современный ему стратегический бомбардировщик В-52. При необходимости он мог совершить до восьми поворотов (противозенитных маневров), но все их надо было заложить в систему бортового управления до старта. При необходимости SM-62 можно было вернуть и даже посадить на брюхо на идеально ровной взлетно-посадочной полосе (ВПП). Но в отличие от В-52 ракета не могла маневрировать, ставить активные и пассивные помехи радиолокаторам ПВО и использовать кормовую артиллерийскую установку. Зато цена “Снарка” была в 20 раз меньше цены В-52.

При полете с автопилотом на полную дальность круговое вероятное отклонение (КВО) “Снарка” составляло около 20 км, что было неприемлемо даже при наличии термоядерного заряда. Поэтому, как и советские ракеты, “Снарк” был оснащен системой астрокоррекции, которая теоретически должна была обеспечивать КВО 2,4 км. Однако на испытаниях лучшее КВО составило 7,5 км.

Летные испытания “Снарка” велись с 1951 по 1961 год. А в январе 1958 года 702-е авиационное крыло, имевшее на вооружении 36 ракет “Снарк”, было введено в состав ВВС США. Фактически же на боевом дежурстве “Снарк” состоял первые восемь месяцев 1961 года.

В июне 1961 года президент Кеннеди приказал снять с вооружения SM-62, назвав комплекс “анахронизмом”.

Параллельно со “Снарком” создавалась и крылатая ракета с ПВРД, который на высоте 18–25 км мог развивать скорость, в три раза превышающую звуковую. Но прямоточный двигатель мог работать только при большой скорости полета, поэтому крылатой ракете нужна была разгонная ступень. Таким образом, крылатая ракета с ПВРД представляет баллистическую ракету с жидкостно-реактивным двигателем в качестве первой ступени и крылатую ракету в качестве второй ступени. К такой схеме стратегической крылатой ракеты почти одновременно пришли конструкторы США и СССР.

В 1947 году фирма North American Aviation (впоследствии Rockwell International, а затем – в составе Boeing) начала разработку двухступенчатой крылатой ракеты “Навахо”. Первая, разгонная ступень ее имела ЖРД на базе двигателя ракеты “Фау-2”, который работал на жидком кислороде и этиловом спирте и развивал тягу в 34 тонны. Вторая ступень имела ПВРД, развивавший маршевую скорость порядка 1300 км/ч. Дальность полета крылатой ракеты должна была составлять 805 км.

Впоследствии проект “Навахо” был пересмотрен, и фирма Rocketdyne в 1955 году начала разработку нового ускорителя с ЖРД на керосине и жидком кислороде тягой 61,3 т.

Запуск ракеты “Навахо” (SM-64А) производился вертикально со специальной пусковой установки (ПУ) на мысе Канаверал в штате Флорида. Внешне ПУ была очень похожа на ПУ баллистических ракет средней и большой дальности.

Первый пуск “Навахо” состоялся 6 ноября 1956 года, а последний, 10-й, – 28 ноября 1958 года. Достигнута максимальная дальность 1999 км.

Решением Министерства обороны США от 11 июля 1957 года разработка проекта “Навахо” была приостановлена, однако программа летных испытаний продолжена для получения “необходимых данных о характеристиках крылатых аппаратов при полете на больших скоростях”.

Как найти цель

Между тем самый важный вопрос в истории «Буревестника» — это как ракета сможет следить за своим маршрутом во время многочасового, а возможно, и многодневного полета?

Ошибочно считается, что современные КР типа Х-555, Х-101 «Калибр-НК», Tomahawk летят по показаниям GPS/ГЛОНАСС. На самом деле спутниковые системы навигации только увеличивают точность попадания ракет. А также служат резервными навигационными системами. Без показания GPS/ГЛОНАСС крылатые ракеты вполне спокойно долетят до заданных целей и поразят их.

В современных КР используется коррекция по экстремальным точкам местности. В память изделия заложены изображения объектов местности на маршруте полета. К примеру, горы, холмы, изгибы рек и т.д.

В определенное время ракета совершает «подскок» на высоту в несколько сотен метров и «осматривает» местность. Затем навигационная система сравнивает «увиденное» с заложенным эталоном. Это позволяет понять, насколько изделие отклонилось от маршрута и как его скорректировать.

С большой долей вероятности «Буревестник» будет также использовать коррекцию по экстремальным точкам местности. Современные технологии позволяют разместить на борту КР компактные бортовые компьютеры и системы хранения информации. Поэтому заложить в память «Буревестника» информацию о целых регионах земного шара не так уж тяжело.

Буревестник

Фото: mil.ru

Но у системы коррекции по экстремальным точкам есть свои недостатки. В частности, это полеты над водой. Ведь там нет холмов, гор и мостов

При планировании пуска КР над морской акваторией важно попасть в так называемое «первое окно». То есть ракета должна выполнить первый подскок для коррекции своего маршрута уже над землей

В то же время на представленной Владимиром Путиным схеме видно, что «Буревестник» большую часть своего полета будет выполнять над океанами. Как в этом случае будет осуществляться коррекция маршрута? Вряд ли это будут данные от GPS/ГЛОНАСС.

Проблемы с «доводкой» навигационных систем и систем управления — одни из самых сложных в проектировании крылатых ракет. Достаточно вспомнить пример уникальной сверхзвуковой ракеты «Метеорит». Работы по которой велись в конце 1980-х годов. Даже для нынешнего времени это изделие весьма сложное и создано с использованием уникальных технологий.

Уже на этапе испытаний разработчики довели до штатной работы практически все системы ракеты и успешно запускали ее с самолетов-носителей и подводной лодки. Работал даже уникальный плазменный экран, который скрывал воздухозаборник ракеты от радаров противника. Но проблемой до самого конца работ так и осталась именно связка систем навигации и управления.

Конструкция

По заявлениям президента России Владимира Путина и материалам Министерства обороны России известно, что по габаритам корпуса ракета сопоставима с крылатой ракетой Х-101 и оснащена малогабаритной ядерной энергоустановкой. Заявленная дальность полёта в десятки раз превышает дальность полёта Х-101. На кадрах официальных презентаций ракета стартует с наклонной пусковой установки с помощью ускорителей.

По заявлению эксперта «Военно-промышленного курьера» Павла Иванова: «по габаритам новейшая ракета в полтора-два раза больше «сто первой». В отличие от последней крылья у «Буревестника» размещены не внизу, а сверху фюзеляжа. Также на видео можно рассмотреть характерные выступы. Скорее всего именно там происходит нагревание воздуха ядерным реактором…Масса «Буревестника» в несколько раз, а вероятно, и на порядок больше, чем у Х-101».

По данным «Независимой газеты», стартовый двигатель ракеты — твердотопливный, маршевый двигатель — ядерный воздушно-реактивный. Габариты: длина на старте — 12 м, в полёте — 9 м, корпус в фронтальной проекции имеет форму эллипса 1×1,5 м.

Ядерная силовая установка

3 марта 2018 года агентство ТАСС со ссылкой на военно-дипломатический источник сообщило о завершении испытаний малогабаритной ядерной энергетической установки, которая может использоваться при производстве крылатых ракет и подводных аппаратов.

Джефф Терри, профессор физики Технологического института Иллинойса, используя аналогии с крылатой ракетой «Томагавк», оценил полезную (нетепловую) мощность двигателя «Буревестника» приблизительно в 766 кВт. Из этого он делает вывод, что это вполне вписывается в потенциальный диапазон мощностей компактного ядерного реактора современного поколения.

В «Буревестнике» используется прямоточная газовая турбина открытого типа, в отличие от «Посейдона», где на том же реакторе применена газовая турбина закрытого типа, где отработанный и охлаждённый газ возвращается обратно в реактор.

Тактико-технические характеристики

По данным ТАСС, ракета комплекса является дозвуковой.

Траектория полёта крылатой ракеты с учётом чрезвычайно продолжительного времени маневрирования, по мнению разработчиков, обеспечивает возможность преодоления рубежей ПВО и ПРО.

Испытания

Впервые о ходе испытаний ракеты заявил президент Российской Федерации В. Путин в послании Федеральному собранию 1 марта 2018 года, заявление сопровождалось видеороликом пуска ракеты.

В июле 2018 года Министерство обороны РФ провело брифинг и продемонстрировало видео с испытаниями и цеха с ракетами. Представитель Минобороны заявил, что создание ракеты идёт по плану:

В мае 2018 года американский телеканал CNBC опубликовал заявление анонимных источников о том, что, согласно отчёту неназванных разведывательных структур США, испытания ракеты в конце 2017 года были неудачными. Это заявление подверглось критике: в частности, член Экспертного совета коллегии Военно-промышленной комиссии Российской Федерации Виктор Мураховский заявил, что источники издания приняли за аварии этап бросковых испытаний.

В августе 2018 года CNBC опубликовал статью, где сообщил подробности испытаний ракеты, проводившихся с ноября 2017 по февраль 2018 года. В качестве источника сведений вновь была указана неназванная разведслужба США. В частности, сообщалось о подготовке операции по поднятию со дна Баренцева моря ракеты с ядерным двигателем, упавшей в ходе одного из неудачных испытаний. Издание The Diplomat дополнило статью CNBC спутниковыми снимками предполагаемого испытательного полигона. Главный редактор журнала «Национальная оборона» Игорь Коротченко назвал новость специально «срежиссированным вбросом, за которым стоят те структуры Пентагона, которые проводят информационные операции в киберпространстве».

В начале февраля 2019 года американские издания The Diplomat и Business Insider на основании неизвестных источников в разведке США заявили о возобновлении испытаний крылатой ракеты на полигоне Капустин Яр; испытания охарактеризованы как частично успешные. В феврале 2019 года Business Insider, комментируя 13-е по счёту испытание, заявил, что «ракета до сих пор не функционирует должным образом». Со ссылкой на разведку США сообщается, что лишь одно испытание за всё это время было успешным.

По официально не подтверждённым данным ТАСС, в январе 2019 года прошли успешные испытания ядерной энергетической установки для крылатой ракеты комплекса «Буревестник».

В сентябре 2019 года CNBS со ссылкой на источники в американской разведке заявил как минимум о пяти завершившихся неудачей испытаниях «Буревестника» в период с ноября 2017 по 2019 год. Эта информация была опровергнута военным экспертом Игорем Коротченко. Он расценил заявления американских СМИ о якобы неудачах при испытаниях крылатой ракеты «Буревестник» как информационную операцию, направленную на дискредитацию российской «оборонки». Несмотря на имеющиеся проблемы, ракета, по мнению экспертов, будет поставлена на вооружение к 2025 году.

В сентябре 2019 года эксперт Павел Иванов выразил мнение, что испытания ракеты идут параллельно на двух или трёх полигонах: на Новой Земле, в Капустином Яру и, возможно, в .

Предполагаемая авария в ходе испытаний

Основная статья: Инцидент в Нёноксе

8 августа 2019 года на военном полигоне вблизи села Нёнокса и посёлка Сопка (Архангельская область) произошёл взрыв, в результате которого погибли пять учёных-испытателей и ещё три человека пострадали. В Северодвинске, находящемся в 30 км от этого места, был зафиксирован кратковременный (с 11:50 до 12:20 по московскому времени) скачок радиационного фона до 2 мкЗв/ч при 0,11 мкЗв/ч. По данным Северного управления по гидрометеорологии и мониторингу окружающей среды, повышение гамма-излучения на постах автоматизированной системы контроля радиационной обстановки было связано с прохождением облака радиоактивных инертных газов. Повышенный уровень бета-излучения наблюдался не только в Северодвинске, но и в Архангельске, в период 9 — 11 августа.

По утверждению Минобороны и корпорации «Росатом», на полигоне взорвался жидкостный реактивный двигатель, в котором использовался радиоизотопный источник питания. Эта же версия была приведена в газете «Известия».

Эксперты по ядерному оружию из и Энн Пеллегрино на основе спутниковых фотографий и косвенных данных высказали мнение, что несчастный случай произошёл во время испытаний крылатой ракеты с ядерной установкой «Буревестник». Позднее президент США Дональд Трамп заявил, что взорвавшимся изделием была именно ракета «Буревестник», при этом в администрации президента не подтвердили и не опровергли возможный факт испытания крылатой ракеты с ядерной установкой, военные эксперты выразили мнение, что сделанное Трампом заявление основано не на докладах разведки, а на публикациях СМИ.

Поделитесь в социальных сетях:ВКонтактеFacebookX
Напишите комментарий